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INTRODUCTION 

You don't have to deal with ADCs or DACs for long before running across this often quoted formula for the theoretical signal-to-

noise ratio (SNR) of a converter. Rather than blindly accepting it on face value, a fundamental knowledge of its origin is 

important, because the formula encompasses some subtleties which if not understood can lead to significant misinterpretation of

both data sheet specifications and converter performance. 

Remember that this formula represents the theoretical performance of a perfect N-bit ADC. You can compare the actual ADC 

SNR with the theoretical SNR and get an idea of how the ADC stacks up.  

This tutorial first derives the theoretical quantization noise of an N-bit analog-to-digital converter (ADC). Once the rms 

quantization noise voltage is known, the theoretical signal-to-noise ratio (SNR) is computed. The effects of oversampling on the

SNR are also analyzed.  

DERIVATION 

The maximum error an ideal converter makes when digitizing a signal is ½ LSB as shown in the transfer function of an ideal N-

bit ADC (Figure 1). The quantization error for any ac signal which spans more than a few LSBs can be approximated by an 

uncorrelated sawtooth waveform having a peak-to-peak amplitude of q, the weight of an LSB. Another way to view this 

approximation is that the actual quantization error is equally probable to occur at any point within the range ½ q. Although this 

analysis is not precise, it is accurate enough for most applications.  

W. R. Bennett of Bell Laboratories analyzed the actual spectrum of quantization noise in his classic 1948 paper (Reference 1). 

With the simplifying assumptions previously mentioned, his detailed mathematical analysis simplifies to that of Figure 1. Other

significant papers and books on converter noise followed Bennett's classic publication (References 2-6).  

Figure 1: Ideal N-bit ADC Quantization Noise 
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The quantization error as a function of time is shown in more detail in Figure 2. Again, a simple sawtooth waveform provides a 
sufficiently accurate model for analysis. The equation of the sawtooth error is given by 

The mean-square value of e(t) can be written: 

Performing the simple integration and simplifying, 

The root-mean-square quantization error is therefore 

Figure 2: Quantization Noise as a Function of Time 

The sawtooth error waveform produces harmonics which extend well past the Nyquist bandwidth of dc to fs/2. However, all these 

higher order harmonics must fold (alias) back into the Nyquist bandwidth and sum together to produce an rms noise equal to q/

12.

As Bennett points out (Reference 1), the quantization noise is approximately Gaussian and spread more or less uniformly over 

the Nyquist bandwidth dc to fs/2. The underlying assumption here is that the quantization noise is uncorrelated to the input 

signal. Under certain conditions where the sampling clock and the signal are harmonically related, the quantization noise 

becomes correlated, and the energy is concentrated in the harmonics of the signal  however, the rms value remains 

approximately q/ 12. The theoretical signal-to-noise ratio can now be calculated assuming a full-scale input sinewave: 

The rms signal of the input signal is therefore 

The rms signal-to-noise ratio for an ideal N-bit converter is therefore 



Bennett's paper shows that although the actual spectrum of the quantization noise is quite complex to analyze, the simplified 

analysis which leads to Eq. 9 is accurate enough for most purposes. However, it is important to emphasize again that the rms 

quantization noise is measured over the full Nyquist bandwidth, dc to fs/2.  

OVERSAMPLING AND UNDERSAMPLING 

In many applications, the actual signal of interest occupies a smaller bandwidth, BW, which is less than the Nyquist bandwidth 

(see Figure 3). If digital filtering is used to filter out noise components outside the bandwidth BW, then a correction factor (called 

process gain) must be included in the equation to account for the resulting increase in SNR as shown in Eq. 10.  

The process of sampling a signal at a rate which is greater than twice its bandwidth is referred to as oversampling. Oversampling 

in conjunction with quantization noise shaping and digital filtering are the key concepts in sigma-delta converters, although 

oversampling can be used with any ADC architecture.  

Figure 3: Quantization Noise Spectrum Showing Process Gain 

The significance of process gain can be seen from the following example. In many digital basestations or other wideband 

receivers the signal bandwidth is composed of many individual channels, and a single ADC is used to digitize the entire 

bandwidth. For instance, the analog cellular radio system (AMPS) in the U.S. consists of 416 30-kHz wide channels, occupying a 

bandwidth of approximately 12.5 MHz. Assume a 65-MSPS sampling frequency, and that digital filtering is used to separate the 

individual 30-kHz channels. The process gain due to oversampling for these conditions is given by: 




